Бетон в зимнее время

Чтобы определить, до какой температуры можно заливать бетон, необходимо сначала хотя бы поверхностно рассмотреть особенности процесса набора прочности монолитом. Реакция начинает протекать между цементом/водой в момент затворения. В первые часы бетон еще текучий и с ним можно работать, но уже по прошествии нескольких часов он начинает застывать, становиться сначала более густым, а потом и вовсе твердым.

Процесс взаимодействия воды и цемента называется гидратацией. Гидратация проходит в два этапа: сначала смесь схватывается, потом твердеет. В схватывании задействованы алюминаты, появляются иглообразные кристаллы, связанные между собой. Через 6-10 часов эти кристаллы становятся своеобразным каркасом, скелетом. Бетон начинает твердеть.

Весь процесс схватывания может занимать от 20 минут до 20 часов, что напрямую зависит от температуры окружающего воздуха. Дольше всего процесс проходит в холодное время года – когда на улице около 0, схватываться бетон начинает через 6-10 часов, длится этап 15-20 часов.

В процессе твердения в реакцию с находящейся в растворе водой вступают клинкерные минералы, постепенно формируется силикатная структура. Реакция провоцирует появление мелких кристаллов, они объединяются в уникальную мелкопористую структуру. Это и есть бетон, который на протяжении 28 суток уже набирает марочную прочность и стойкость, не меняя формы и структуры.

Оптимальное значение температуры для стадии твердения также равно 20 градусам, влажность – до 100%.

Отклонения от параметров существенно влияют на прочность: полное созревание монолита длится несколько лет (но набор проектной прочности должен быть завершен через 28 суток после заливки), скорость твердения меняется со временем.

Значительный вклад привнесли в создание ученые совместно с инженерами еще в СССР, были созданы очень эффективные технологии укладки бетона зимой, которые обеспечивают возможность работать с бетоном в течении всего года,в том числе и в зимний период, когда температура опускается ниже 0º.

Популярный способ укладки бетона используемый всегда раньше, заключался в необходимости подогрева компонентов входящих в состав бетона и поддержание их постоянной температуры, так же подогревать бетон который был залит, до того момента, пока он не наберет необходимой прочности.

За счет постоянной круглогодичной необходимости проведения работ с бетоном, были созданы новые методы, позволяющие проводить все работы с бетоном при низких температурах в зимнее время, без необходимости подогрева компонентов входящих в состав бетона и без необходимости подогрева самой бетонной смеси.

Для конструкций имеющих меньшие размеры используется дополнительный обогрев создаваемый искусственным образом, с помощью использования деревянных тепляков, прогрева горячим паром, для которого сооружается специальный кожух вокруг всей опалубки, внутрь которого и подается пар, существуют так же способы, позволяющие подогревать конструкцию с помощью тока.

Зимой бетон готовится в обогреваемых помещениях заводов производителей, с лаборантами, которые и производят все промежуточные проверки и испытания бетона на прочность, а так же контролируют температуру всех компонентов входящих в состав бетонной смеси и температуру самой бетонной смеси. Эти же сотрудники и контролируют процесс добавления добавок в бетон.

Важным моментом является хранение всех компонентов входящих в состав бетона. Зимой хранение становится сложнее, т.к. у многих производителей заполнитель (гравий, щебень и песок) хранится на улице, его нужно защищать от снега. Склады цемента, должны быть надежно защищены от влияния атмосферы и отапливаемыми.

Заполнитель перед добавкой в бетоносмеситель обязательно разрыхляется и подогревается, для того что бы температура полученного бетонной смеси выходящая из бетоносмесителя должна быть в пределах допустимых норм, вода так же должна быть теплой.

Бетон в зимнее время, и его укладка производится с запасом тепла, который расходуется при доставке бетона к месту его непосредственного использования и в процессе укладки бетона до начала обогрева конструкции, если будет использоваться способ «термос», то тепло должно сохраняться в течении всего времени выдерживания бетона до набора необходимой прочности.

Бетонная смесь залитая в опалубку, должна иметь температуру в начале выдерживания или ее подогрева не меньше чем расчетная, при использовании «термоса.

При производстве бетонной смеси предназначенной для проведения работ в зимнее время, температура воды и заполнителя при подаче их в бетоносмеситель, и температура полученной бетонной смеси устанавливается с помощью расчетов, учитывая все потери тепла в процессе смешивания всех компонентов, транспортировки и заливки бетона в конструкцию.

Приготовление бетона ведется под контролем лаборанта, он и устанавливает требуемую температуру, а так же контролирует температуру всех компонентов бетона и температуру бетона при выходе из бетоносмесителя. Если вдруг требуется изменить подогрев, то он дает соответствующие указания.

Использование горячей воды может привести к «запариванию» цемента, для избежания этого должна контролироваться очередность загрузки компонентов в бетоносмеситель: щебень вместе с водой одновременно подаются в бетоносмеситель, и только по заполнению бетоносмесителя половиной всей требуемой воды, добавляются цемент и песок.

Длительность перемешивания бетона нужно увеличивать больше как минимум на 25% если сравнивать с длительностью перемешивания летом (при условии что используется только подогретая вода), если же все компоненты были подогреты, то продолжительность перемешивания можно не увеличивать вовсе.

4.1 Применение методов
зимнего бетонирования должно исключать преждевременное
замораживание бетонной смеси и бетона, обеспечивать заданные темпы
укладки бетонной смеси и получение нормируемых значений прочности
бетона при сокращении времени твердения, а также создавать условия,
исключающие образование трещин в конструкции из-за температурных
перепадов по сечению конструкции.


требования к бетонной смеси и условиям ее транспортирования,
обеспечивающие получение требуемых свойств и, прежде всего,
заданной температуры этой смеси при выгрузке из бетоносмесителя и у
места укладки в конструкции;-
нормируемые значения прочности бетона;-
температурные режимы выдерживания бетона, а при использовании
активных методов зимнего бетонирования – дополнительно
принципиальные и монтажные схемы прогрева;

Работа с бетоном зимой

4.3 Предварительный выбор
метода зимнего бетонирования следует осуществлять с учетом
рекомендаций, приведенных в приложении
Ч СТО 2.6.54* или приложении
Р СП 70.13330.________________*
Вероятно, ошибка оригинала. Следует читать: СТО НОСТРОЙ 2.6.54. – Примечание
изготовителя базы данных.Выбор наиболее
экономичного метода зимнего бетонирования рекомендуется производить
на основе технико-экономической оценки эффективности, выполняемой
посредством комплексного моделирования инвестиционных строительных
проектов.

При этом кроме обычных показателей эффективности, таких
как продолжительность строительства и (или) реализации
инвестиционного строительного проекта, трудоёмкость строительства,
стоимость, чистый доход, период окупаемости, могут быть
использованы дисконтированные показатели – чистый дисконтированный
доход, дисконтируемый период окупаемости, индекс прибыльности или
индекс доходности.

4.4 При выполнении
бетонных работ в зимний период следует соблюдать нижеприведенные
требования охраны труда и техники безопасности.

4.4.1 При эксплуатации
электроустановок для электротермообработки бетона помимо общих
требований правил безопасного производства работ согласно СНиП 12-03 следует руководствоваться
правилами
технической эксплуатации электроустановок потребителей.

4.4.2 В течение всего
периода эксплуатации электроустановок для электротермообработки
бетона рабочая зона должна быть оборудована знаками безопасности и
иметь ограждение высотой не менее 1 м. Вдоль ограждения
устанавливаются красные сигнальные лампы под напряжение не более 42
В, которые загораются одновременно с включением установок
электротермообрабоки.

Работа с бетоном зимой

4.4.3 Запрещается:-
хождение людей, размещение посторонних предметов на поверхности
обогреваемых конструкций;-
проводить работы по электротермообработке без ограждения зоны
производства работ;-
работать при обнаруженной неисправности электропроводки;-
прокладывать электрические провода непосредственно по грунту;

5.1 Приготовление
бетонной смеси следует производить в соответствии с ГОСТ 7473 и СТО НОСТРОЙ 2.6.54 в обогреваемых
бетоносмесительных установках, применяя подогретую воду, оттаянные
или подогретые заполнители, обеспечивающие получение бетонной смеси
с температурой не ниже требуемой по расчёту. Допускается применение
неотогретых сухих заполнителей, не содержащих наледи на зёрнах и
смёрзшихся комьев.

где , – относительная влажность песка и крупного
заполнителя по массе, %;, , , – соответственно масса цемента, песка,
крупного заполнителя и воды в 1 м бетонной смеси, кг (в расчёте на сухие
заполнители);, , , – соответственно температура цемента,
песка, крупного заполнителя и воды при загрузке в смеситель,
°С;0,84 – удельная
теплоёмкость цемента, песка и крупного заполнителя,
кДж/(кг·°С);4,19 – удельная
теплоёмкость воды, кДж/(кг·°С).

Процесс набора прочности бетонных конструкций

Проводя своими руками бетонные работы в зимнее время с использованием добавок, нужно учесть ряд важных правил. Когда встает вопрос, как залить бетон в мороз, рекомендуется применять только быстротвердеющие цементы высокой марки, а также портландцементы.

Крайне важно подогреть компоненты смеси при ее приготовлении, если планируется заливка бетона. Это создаст запас внутреннего тепла и обеспечит равномерное схватывание и набор прочности материала.

Есть еще одна важная особенность зимнего бетонирования с применением добавок. После того как бетонные работы зимой будут завершены, следует утеплить поверхность. Для этого ее укрывают матами минеральной ваты и рубероидом. Это снизит скорость потери тепла и создаст условия для протекания процесса отвердения после заливки.

Транспортировка должна осуществляться в утепленной машине. Кроме того, перед заливкой следует очистить арматуру и опалубку от наледи и снега. Проводить бетонные работы в зимний период нужно быстро, чтобы раствор не успел остыть до момента, когда не будет сверху уложен утеплительный пирог.

При использовании бетона при возведении монолитных конструкций с не напряженной арматурой, без противоморозных добавок нормы СНиП 111-1-76 требуют обеспечить набор прочности бетона до момента замерзания не меньше чем … %:

  • 50% при использовании марки бетона М150
  • 40% при использовании марки бетона М200 и М300
  • 30% при использовании марок бетона М400 и М500

Так же при строительстве объекта, который по завершению строительства будет подвержен влиянию отрицательной температуры (замораживанию) и дальнейшему влиянию температуры выше 0º (оттаиванию), прочность бетона должна быть не меньше 70%, для любой марки бетона, для заливки бетоном конструкции предварительно напряженной — 80%, а при строительстве конструкции, которая будет подвержена сразу же после возведения воздействию воды под расчетным давлением, с определенными марками морозостойкости бетона F и водонепроницаемости бетона W -бетон должен набрать 100% расчетной прочности.

Противоморозные добавки добавляются в бетон с учетом температуры воздуха окружающей среды, в которой придется работать с бетоном. Прочность такого бетона к моменту охлаждения до расчетной температуры (в соответствии с количеством добавок), должна составлять в …%:

  • 30% -при использовании бетона марок до М200 включительно
  • 25% — при использовании бетонов марок М300 и М400

Бетоны выше указанных марок, набрав прочность 30% и 25% могут быть заморожены, но после оттаивания бетонные конструкции должны добирать оставшуюся прочность до 100% в условиях, которые обеспечат набор этой проектной прочности, до того как нагружать эти конструкции нагрузкой.

Набор прочности бетона, обеспечивается правильной подготовкой бетона при его готовку, а так же при защите конструкций после бетонирования, от воздействия контакта с ветром и минусовой температурой.

5.4 Наибольшая допустимая
температура воды для бетонов на портланд- и шлакопортландцементах
не должна превышать 80°С, на быстротвердеющих цементах – 60°С.

5.5 Наибольшая допустимая
температура бетонной смеси на выходе из бетоносмесителя не должна
превышать 35°С.

5.6 Транспортирование
бетонной смеси необходимо производить с учетом требований ГОСТ 7473 и СТО НОСТРОЙ 2.6.54. Применяемые средства
и продолжительность транспортирования бетонной смеси должны
исключать возможность охлаждения её ниже значения, установленного
организационно-технологической документацией.

правила зимнего бетонирования

5.7 Бетонная смесь должна
обеспечивать набор бетоном требуемой прочности. Требуемая прочность
бетона определяется, исходя из проектного класса бетона по
прочности, согласно п.7.1
ГОСТ 18105.

5.8 Перед укладкой
бетонной смеси основание, установленные опалубка и арматура должны
быть очищены от снега и наледи согласно СП 70.13330 и СТО НОСТРОЙ 2.6.54. Для предотвращения
попадания на них снега следует сразу после их подготовки и монтажа
укрывать защитными материалами (плёнками, брезентом и т.п.).

5.9 Укладку бетонной
смеси необходимо производить с учетом требований СП 70.13330 и СТО НОСТРОЙ 2.6.54 такими методами,
которые исключают возможность замерзания смеси в зоне контакта с
основанием.

5.10 В зимнее время при
укладке бетонных смесей без противоморозных добавок необходимо
обеспечить температуру основания не менее плюс 5°С. Обеспечение
положительных температур основания возможно осуществить следующими
основными способами:-
утеплением;-
электродным прогревом;-
прогревом гибкими термоактивными покрытиями;-
отогревом тепловыми пушками или инфракрасными обогревателями в
тепляках.

где – коэффициент, учитывающий теплопотери
(=1,2); – площадь ограждения (внешнего контура и
основания тепляка), м; – перепад температуры между воздухом в
тепляке и наружным воздухом, °С; – приведенный коэффициент теплопередачи
ограждения (внешнего контура и основания тепляка), Вт/(м·°С); – мощность одной тепловой пушки, Вт.

Предлагаем ознакомиться:  Нужно ли грунтовать гипсокартон перед шпатлвкой советы и рекомендации по работе

Тепловые пушки прямого
нагрева можно устанавливать только снаружи тепляка, а подачу
теплого воздуха от них в тепляк осуществлять с помощью гибкого
отвода. Выполнение каких-либо работ в тепляке при этом
запрещается.Тепловые пушки непрямого
нагрева позволяют в процессе отогрева основания выполнять
совмещенные работы в тепляке, однако при этом необходимо
систематически проветривать тепляк.

5.12 При использовании
инфракрасных обогревателей их расставляют равномерно по тепляку,
направляя его излучение на отогреваемое основание.

5.13 Необходимую
продолжительность обогрева оснований (час) следует определять по
формулам:-
для глин и суглинков


для супесей и песчаных грунтов

где – глубина промерзания грунта, м; – среднесуточная температура наружного
воздуха на период обогрева, °С; – средняя рабочая температура обогрева
основания, °С.

5.14 Отогрев оснований
выполняется на глубину не менее 300 мм для непучинистых и бетонных
оснований и не менее 500 мм для пучинистых, с последующим
предохранением их от замерзания до момента укладки бетонной смеси.
Контроль глубины отогрева оснований рекомендуется осуществлять
посредством регистрации температуры в предварительно выполненных
скважинах необходимой глубины.

5.15 Допускается не
отогревать непучинистые основания в случаях:-
использования активных методов зимнего бетонирования;-
использования пассивных методов зимнего бетонирования, если по
расчёту в зоне контакта на протяжении расчетного периода
выдерживания бетона не произойдет его замерзания.

5.16 При температуре
воздуха ниже минус 10°С согласно СТО НОСТОРОЙ 2.6.54* бетонирование
густоармированных конструкций (при расходе арматуры более 70
кг/м или расстоянии между параллельными
стержнями в свету менее 6) с арматурой диаметром больше 24 мм,
арматурой из жестких прокатных профилей или с крупными
металлическими закладными частями следует выполнять с
предварительным отогревом металла до положительной температуры, за
исключением случаев укладки предварительно разогретых бетонных
смесей (при температуре смеси выше 45°С).________________*
Вероятно, ошибка оригинала. Следует читать: СТО НОСТРОЙ 2.6.54. – Примечание
изготовителя базы данных.

Создание «термоса» — утепление бетона

Есть некоторые особенности бетонирования в зимних условиях методом «термоса». В этом случае разогретый при приготовлении раствор заливается в утепленную опалубку. При этом варианте рекомендуется дополнительно вводить в состав раствора противоморозные добавки.

Опалубку утепляют матами минеральной ваты. Раствор во время заливки данным способом должен иметь температуру 60… 80°C. Существует несколько методов выдерживания бетона в зимних условиях.

В одних случаях разогрев раствора проводится в месте его изготовления, а затем он доставляется до участка проведения работ. В других разогрев состава выполняется непосредственно на стройплощадке с помощью электродов.

Достаточно простой способ сделать подходящие условия для набора прочности бетоном в зимнее время, — это создание так называемого «термоса», которым изолируется возводимая конструкция от окружающей среды, что позволяет обеспечивать теплый микроклимат в течении длительного времени, так необходимый для того что бы бетон набрал свою прочность.

Данная технология была создана почти 50 лет назад нашим ученым проф. И. А. Кириенко. Технология сохранения тепла, очень похожа на принцип термоса. Тепло, которое выделяет цемент при его твердении и наборе прочности, отлично разогревает всю конструкцию внутри, что позволяет использовать такой способ для бетонирования в зимнее время сооружений, которые имеют не большую поверхность, относительно своего объема.

Для того что бы обеспечить более быстрое твердение бетона,  в него добавляются специальные добавки (ускоритель), или используют электрический ток, прогрев горячим паром и воздухом.

Связанные статьи: Расчет арматуры

Влияние отрицательной температуры на твердение бетона

Как уже было указано выше, скорость гидратации очень сильно зависит о температуры окружающей среды. Так, при снижении с 20 до 5 градусов твердение проходит медленнее в среднем в 5 раз. Дальше чем ниже температура, тем медленнее проходит реакция. При достижении минусовой температуры гидратация и вовсе прекращается (вода просто замерзает).

заливка бетона при минусовой температуре

В момент замерзания вода имеет свойство расширяться, что становится причиной повышения давления внутри бетонного раствора и разрушения уже сформировавшихся связей кристаллов. Структура бетона разрушается и в дальнейшем восстановиться уже не может. Кроме того, появившийся в смеси лед может обволакивать крупные наполнители, разрушая сцепление с цементом. Все это существенно ухудшает монолитность конструкции и понижает прочность.

Когда вода оттаивает, твердение продолжается, но структура бетона уже деформирована. Могут появляться отслоения, деформации, трещины, наблюдаться отделение крупных наполнителей и арматуры от монолита. Чем на более ранней стадии свежезалитый бетон замерз, тем меньшим будет показатель прочности.

  • Когда температура окружающей среды находится на отметке 5 С и ниже, а никаких мероприятий по прогреву или повышению морозостойкости бетона осуществляться не планируется.
  • В межсезонье – когда температура нестабильна, отмечены сильные скачки как отметок на термометре, так и влажности.
  • Если термометр показывает температуру 25 градусов и выше, а влажность воздуха ниже 50%. В такое время лучше использовать специальные цементы или не проводить работы, так как процесс гидратации будет происходит очень быстро: вода испарится, а бетон не успеет набрать прочность, вследствие чего нередко появляются трещины, деформации, отслоения и т.д.
  • Заливка бетона при минусовой температуре без прогрева в течение минимум 3 дней до отметки в 10-30 градусов.
  • Когда уже приготовлен бетон со специальными присадками, а за окном внезапно наступила оттепель или влажность воздуха стала выше 60%, начался дождь и т.д.
  • В случае неумения определить оптимальный режим прогрева, настроить приборы, контролировать бетон в мороз. Ведь для бетона одинаково страшны как мороз, так и перегрев.
  1. От 5 до 20 градусов – нормальные условия для заливки бетона, приготовленного по стандартному рецепту.
  2. От нуля до 5 градусов – исключительно с использованием специальных добавок.
  3. От 0 до -20 градусов – со специальными добавками и прогревом.
  4. Идеальные условия – температура бетона 30 и воздуха 20, влажность до 100%.

Как бетонировать зимой

Коль уж мы завели речь о зимнем бетонировании, будем считать, что температура, при которой мы производим монолитные работы, – отрицательная. Основная задача – не дать замерзнуть воде, входящей в состав бетона. Как говорится в рекламе: «Не дай себе засохнуть». В данном случае – не дайте засохнуть цементу.

Какие же методы зимнего бетонирования наиболее часто используются на современной стройке. Существует несколько основных способов сохранения воды затворения бетона от вымерзания:

  • Применение противоморозных добавок в бетон (ПМД)
  • Использование электропрогрева бетона
  • Укрывание бетона пленкой ПВХ, утеплителями и т.п.
  • Сооружение временного укрытия с прогревом тепловыми пушками

Применение противоморозных добавок в бетон – наиболее распространённый способ, применяемый при бетонировании в зимних условиях. Большинство бетонных заводов выпускают бетон с зимними добавками ПМД. Так называемый зимний бетон производится в различных вариациях, отличающихся между собой процентным содержанием добавок.

Противоморозные добавки вводятся в бетон в строгом процентном соотношении с количеством цемента, входящего в ту или иную марку бетона. Так же, количество противоморозной добавки зависит от предполагаемой температуры воздуха, при которой будет происходить бетонирование. Более подробную информацию читайте в разделе противоморозные добавки для бетона.

Электропрогрев бетона чаще применяется на больших стройках, где имеется техническая возможность использовать трансформаторы большой мощности (30-80 кВт). В российских реалиях дряхлых подстанций и электросетей недостаточной мощности, зимний прогрев бетона – это малореальное мероприятие для частного застройщика. Электрический прогрев бетона зимой, на мой взгляд – лучший метод, при проведении монолитных работ, но… Как говорится: “Чем богаты, тем и рады”.

Укрывание бетона – наиболее рациональный метод бетонирования в зимнее время, при пограничных температурах воздуха 3-3. Схватывание и твердение бетона – изотермический процесс, то есть: при застывании и наборе прочности, цемент, контактируя с водой, выделяет тепло. И было бы неплохо сохранить это тепло.

Для этого необходимо свежеотлитую конструкцию из бетона укрыть ПВХ плёнкой, или утеплителем. В некоторых случаях, если при бетонировании в зимнее время применялся обычный бетон без противоморозных добавок, а температура воздуха резко упала до низких минусовых значений (-5-15) целесообразно использовать газовые или электрические пушки.

Если будет использоваться дополнительный прогрев тепловыми пушками, то укрытие из плёнки ПВХ укладывается не на поверхность бетона, а на временный каркас из досок, брусков и т.п . Создаётся нечто наподобие низкой «палатки» или «шатра» над бетонной конструкцией и под это укрытие ставятся тепловые пушки. Чем выше будет температура под шатром, тем быстрее будет идти процесс набора прочности, и соответственно, раньше можно будет прекратить прогрев.

В большинстве случаев, для первичного набора прочности бетона, достаточной для проведения дальнейших работ, хватает 1-3 суток прогрева тепловыми пушками. За это время бетон может набрать до 50% марочной прочности.

В любом случае, даже если ничего не сделано, и бетон всё таки замерз – не стоит отчаиваться. Процесс набора прочности возобновится как только восстановится положительная температура и вода оттает. Довольно часта ситуация, когда в октябре-ноябре прихватывают морозы на насколько дней, а потом на протяжении месяца стоит положительная температура. В данной ситуации, бетон, примороженный в эти несколько холодных дней, продолжит набор прочности с наступлением оттепели.

Чаще всего подобное «издевательство» проходит с незначительными потерями для залитой бетонной конструкции. Конечно же, имеет место быть снижение марочной прочности бетона, подмороженного в раннем возрасте. Однако, учитывая проектные запасы этой самой прочности, можно закрыть глаза на это недоразумение.

Как правило, при подмораживании страдает самый верхний слой бетона. Если отливается плита перекрытия или фундаментная плита, то при резких заморозках пострадает поверхность, а не массив конструкции. В дальнейшем эта поверхность, сродни облупившейся краске, обсыпется шелухой. Причин тому немного.

  • Во-первых, внутренний массив бетонной конструкции спасает тепло, выделяемое реакцией взаимодействия цемента и воды (изотермический процесс). Ну и конечно же, помогают защитные функции опалубки и внешнего слоя бетона.
  • Во-вторых, вода, как самый легкий компонент бетона, во всех случаях поднимается наверх. Особенно, если бетон при заливке разбавлялся водой. В результате мы получаем излишнюю несвязанную воду в верхней части плиты, ну и конечно же, нарушенной водоцементное отношение в этой части конструкции. А тут ещё и мороз «помогает».

Если случилась беда: бетон все же замерз, и оттепелей не ожидается, примите хоть какие-то меры по спасению конструкции. Накройте бетонное сооружение плёнкой ПВХ, дабы заморозки и оттепели, которые неизменно будут происходить весной не разрушали и без того слабый верхний слой бетона. В таком случае Вы дадите хоть какой-то шанс цементу продолжить процесс гидратации весной. Прочность будет ниже, чем расчётная марка бетона, но не так критично, как в случае с просто брошенным под снегом и дождями неокрепшим бетоном.

Не укрытый, замороженный бетон, весной может потерять значительную часть своего верхнего слоя. Вы буквально сметёте веником пласты и крошки несхватившегося цемента, песка и щебня. И это немудрено. Снег, лежащий на конструкции, весной будет таять днём и подмерзать ночью, разрушая тем самым и без того слабую поверхность.

Использовать бетон в мороз может понадобиться в самых разных случаях – когда невыгодно останавливать строительство на целый сезон, в случае выполнения экстренных работ и т.д. С учетом губительного воздействия минусовой температуры на материал и его технические характеристики, бетон нужно прогревать.

Прогрев бетона осуществляется до момента набора критического показателя прочности. Если таковых данных нет в проектной документации, то значение принимают в 70% от проектной прочности. Когда есть требования со значениями водонепроницаемости/морозостойкости, то критическая прочность составляет 85% от проектной.

  • Прогрев самих компонентов для приготовления смеси.
  • Использование эффекта термоса.
  • Осуществление электронагрева.
  • Применение паропрогрева.

Таким образом, вопроса о том, при какой минимальной температуре можно заливать бетон, нет вообще. Задача заключается в том, чтобы в соответствии с условиями работ оптимально подготовить смесь и объект для сохранения технических свойств материала и основных требований по прочности, надежности, долговечности.

Самый простой и дешевый вариант – прогрев всех компонентов, использующихся для приготовления бетона. Их греют для того, чтобы в момент заливки бетон имел минимум 35-40 градусов.

Греют все материалы, кроме цемента: щебень/песок до 60, воду до 90, цемент просто на время оставляют в теплом помещении (чтобы был комнатной температуры). Потом смешивают все компоненты и выполняют заливку.

Метод термоса

Этот вариант актуален в случае заливки массивных конструкций. Дополнительного прогрева не предусматривается, но укладываемая смесь должна демонстрировать температуру в 10 градусов как минимум (лучше больше). Данный метод заключается в том, чтобы залитая смесь в процессе остывания успела приобрести критическую прочность.

Предлагаем ознакомиться:  Как установить дверные ручки для межкомнатных дверей своими руками

Принцип работы этого метода заключается в том, чтобы бетон вступил в реакцию и начался процесс затвердевания, который является экзотермическим (то есть, сопровождается выделением тепла). Таким образом, бетоном будет выполняться самоподогрев. Если исключить теплопотери, бетон может прогреться до 70 и выше.

Опалубку надежно защищают теплоизолирующими материалами, устраняя теплопотери бетона, находящегося в процессе затвердевания. Вода не замерзает, бетонный монолит постепенно набирает прочность без разрушения внутренней структуры. Такой вариант используют для заливки фундаментов зимой, он считается наиболее простым и экономичным, так как не требует использования какого-либо оборудования.

Задумываясь о том, при каких температурах можно заливать бетон, многие рассматривают в качестве выхода из ситуации электропрогрев. Осуществляться прогрев может с использованием нескольких способов: с применением электродов, метода индукции и с различными электронагревательными устройствами.

  • В свежезалитую смесь вводят электроды.
  • Потом на электроды подают ток.
  • В процессе прохождения тока по электродам они нагреваются, передают тепло бетону.

Как бетонировать зимой

Ток должен быть переменным, так как постоянный станет причиной прохождения процесса электролиза, который сопровождается выделением газа. Газ экранирует поверхность всех электродов, значительно возрастает сопротивление тока, в результате чего нагрев заметно снижается. В случае, если в бетоне уложена арматура, она может использоваться в качестве электрода.

Чтобы данный способ сработал, необходимо сделать так, чтобы бетон прогревался равномерно и максимум до 60 градусов. Расход электроэнергии в таких случаях обычно не превышает 80-100 кВт*ч на кубический метр бетонного раствора.

Индукционный нагрев применяется достаточно редко, так как его реализация предполагает ряд сложностей. Данный тип прогрева бетонной смеси работает на принципе бесконтактного нагрева высокочастотными токами электропроводящих материалов. Так, вокруг стальной арматуры мотают изолированный провод, а через него пропускают ток.

Применение электронагревательных приборов предполагает использование самых разных средств для уменьшения негативного воздействия мороза на процесс гидратации смеси. Это могут быть греющие маты, к примеру, которые раскладывают на бетон и затем подключаются к сети. Можно сделать над залитым монолитом что-то типа палатки, установить внутри тепловую пушку и греть.

Морозостойкие добавки в бетон

При выполнении бетонных работ в зимнее время, широкое распространение получил еще один, уже ставший очень популярным способ. Он основан на добавлении в бетонную смесь, специальных морозостойких добавок, солей, которые способны понизить температуру замерзания бетона, а так же значительно ускоряющие процесс твердения и набора прочности бетоном.

Если же возводимая конструкция является менее ответственной, то можно использовать большее количество соли, и выполнять работы до -20ºC, без использования способов обогрева бетона.

Использование присадок при морозе

как бетонировать в зимнее время

Во время зимы заливка бетона представляет большую сложность. Низкие температуры приводят к замедлению гидратации цемента. Это приводит к тому, что залитая поверхность медленнее отвердевает.

Нивелировать данные нежелательные эффекты влияния низких температур помогают специальные добавки. Их можно разделить на 3 категории. К первой категории относятся модификаторы, которые ускоряют схватывание бетона.

  • карбонат натрия;
  • тетраборат натрия;
  • нитрат натрия;
  • формиат натрия.

Ко второй категории относятся добавки, включающие сульфиты. Такие модификаторы обеспечивают выделение большого количества тепла, за счет чего ускоряется процесс взаимодействия составных частей бетонной смеси с продуктами гидратации. При этом сульфитосодержащие добавки нельзя применять для снижения температуры замерзания бетонной смеси.

К третьей категории относятся модификаторы, оказывающие антифризное действие. Данные добавки способны снижать температуру кристаллизации входящей в состав раствора жидкости. Кроме того, такие составы могут немного уменьшить или увеличить скорость схватывания материала.

Технология использования таких добавок крайне проста. Вещества вводятся в раствор во время его приготовления. Учитывая, что большинство добавок ускоряют схватывание бетона, поэтому такую смесь следует залить в течение 3 часов после изготовления. При этом важно, чтобы температура бетонного состава была не менее 20°C.

Так как заливать смесь нужно быстро, не рекомендуется транспортировать ее после изготовления на расстояние более 100 км. При необходимости более длительной транспортировки есть вероятность, что бетон схватится раньше времени.

Сегодня очень распространено использование противоморозных добавок и особых химических ускорителей твердения бетона. Чаще всего в качестве этих добавок выступают нитрит натрия, хлористые соли, карбонат кальция и другие. Добавки существенно понижают температуру замерзания воды, активизируют гидратацию цемента (таким образом повышается температура застывания бетона).

Благодаря введению в состав смеси добавок можно избежать необходимости прогрева. Некоторые добавки способны повысить стойкость бетона к морозу настолько, что вопрос о том, можно ли заливать бетон при минусе, не стоит вообще: гидратация проходит даже при окружающей температуре -20 градусов.

Работа с бетоном зимой

Но, несмотря на все преимущества, присадки обладают и некоторыми недостатками.

  • Они пагубно влияют на арматуру – может начаться процесс коррозии, поэтому актуально вводить добавки лишь в неармированный бетон.
  • Добавки позволяют бетону набрать прочность, равную максимум 30% от проектной, а потом при оттаивании смеси (при плюсовой температуре) процесс набора прочности продолжается. В связи с этим, по СНиП, добавки нельзя вводить в бетон, работающий в условиях динамических нагрузок (молоты, вибростанки и т.д.).
  1. Сульфаты – активно выделяют тепло, сопровождая процесс гидратации. Прочно связываются с труднорастворимыми соединениями, для снижения температуры замерзания смеси их использовать нельзя.
  2. Антифриз – уменьшает температуру кристаллизации жидкости, увеличивает скорость схватывания раствора, на скорость формирования структур не влияет.
  3. Ускорители – повышают растворимость силикатных компонентов цемента, они реагируют с продуктами гидратации, создают основные и двойные соли, которые понижают температуру замерзания жидкости в растворе.
  • Карбонат кальция (поташ) – кристаллическое вещество, противоморозный компонент, который ускоряет схватывание и затвердевание. Понижает прочность бетонного монолита на 20-30%, поэтому его обычно сочетают с сульфидно-дрожжевой бражкой (тетраборатом натрия) в концентрации максимум 30%.
  • Тетраборат натрия (сульфатно-дрожжевая бражка) – смесь солей кальция, натрия, аммония либо лигносульфоновых кислот. Добавка используется в виде примеси к поташу, не дает бетону терять прочность.
  • Нитрит натрия – кристаллический порошок, ядовитое пожароопасное вещество, применяется при возведении многоэтажных зданий, легко растворяется, не разрушает арматуру, повышает скорость застывания в 1.5 раза.
  • Формиат кальция или натрия – используется с пластификаторами в объеме не более 2-6% от массы раствора. Добавляется в процессе замеса.
  • Аммиачная вода – раствор аммиака в концентрации 10-12%, не провоцирует корродирования металла, не дает высолов.

АННОТАЦИЯ

Настоящие рекомендации
разработаны в рамках Программы стандартизации Национального
объединения строителей и направлены на реализацию Градостроительного кодекса Российской
Федерации, Федеральных законов Российской Федерации от 27 декабря 2002 года N 184-ФЗ “О
техническом регулировании”, от 30
декабря 2009 года N 384-ФЗ “Технический регламент о безопасности
зданий и сооружений”, постановления Правительства Российской
Федерации от 21 июня 2010 года N 468 “О порядке проведения
строительного контроля при осуществлении строительства,
реконструкции и капитального ремонта объектов капитального
строительства”, приказа
Министерства регионального развития Российской Федерации от 30
декабря 2009 года N 624 “Об утверждении Перечня видов работ по
инженерным изысканиям, по подготовке проектной документации, по
строительству, реконструкции, капитальному ремонту объектов
капитального строительства, которые оказывают влияние на
безопасность объектов капитального строительства” и иных
законодательных и нормативных правовых актов, действующих в области
градостроительной деятельности.

Настоящие рекомендации
разработаны в развитие СТО НОСТРОЙ
2.6.54-2011 “Конструкции монолитные бетонные и железобетонные.
Технические требования к производству работ, правила и методы
контроля” для выработки единых требований по производству и
контролю качества бетонных работ в зимнее время.В
основу рекомендаций положены результаты научных исследований,
выполненных на кафедре технологии строительного производства
Южно-Уральского государственного университета и других
научно-исследовательских, учебных и производственных организаций
Российской Федерации, а также накопленный опыт отечественного и
зарубежного строительства в области зимнего бетонирования.

Требования настоящих рекомендаций до введения их в действие прошли
апробацию в строительных организациях Челябинской области.Авторский коллектив:
доктор технических наук, профессор, член-корреспондент Российской
академии архитектуры и строительных наук, заслуженный деятель науки
Российской Федерации, почетный строитель России Головнев
Станислав Георгиевич, кандидат технических наук, доцент
Пикус Григорий Александрович, доктор технических
наук, доцент Байбурин Альберт Халитович (кафедра
технологии строительного производства федерального государственного
бюджетного образовательного учреждения высшего профессионального
образования “Южно-Уральский государственный университет”
(национальный исследовательский университет)), почетный строитель
России Ефименко Евгений Борисович, кандидат
технических наук Мозгалёв Кирилл Михайлович
(управление регионального государственного строительного надзора
Министерства строительства и инфраструктуры Челябинской области),
почетный строитель России Абаимов Александр Иванович
(Челябинский межрегиональный союз строителей), почетный строитель
России Десятков Юрий Васильевич (некоммерческое
партнерство “Саморегулируемая организация Союз строительных
компаний Урала и Сибири”).

Рекомендации одобрены
управлением регионального государственного строительного надзора
Министерства строительства и инфраструктуры Челябинской области для
практического применения их при строительстве, реконструкции
объектов капитального строительства на территории Челябинской
области, протокол N 17 от 23.09.2014 г.

Применение добавок противоморозного действия

1.1 Рекомендации
распространяются на производство бетонных работ в зимний период при
устройстве всех видов бетонных и железобетонных конструкций,
применяемых в гражданском и промышленном строительстве,
изготовляемых на строительной площадке из тяжелых бетонов и
ненапрягаемой арматуры.Примечание – Зимним
периодом, в соответствии с СП
70.13330, считается период, когда среднесуточная температура
наружного воздуха ниже 5°С, а минимальная суточная температура
ниже 0°С.

1.2 Настоящие
рекомендации содержат основные требования к технологическим
процессам, условиям производства работ и порядку контроля их
выполнения.

1.3 Рекомендации содержат
общие требования к процессам компьютерного контроля температуры и
прочности бетона, а также способам выполнения отдельных этапов
контроля и их документированию.

2
НОРМАТИВНЫЕ ССЫЛКИ

В
настоящих рекомендациях используются нормативные ссылки на
следующие стандарты и своды правил:ГОСТ 7473-2010 Смеси бетонные.
Технические условияГОСТ 10180-2012 Бетоны. Методы
определения прочности по контрольным образцамГОСТ 10181-2000 Смеси бетонные. Методы
испытанийГОСТ 17624-2012 Бетоны. Ультразвуковой
метод определения прочностиГОСТ 18105-2010 Бетоны.

Правила контроля
и оценки прочностиГОСТ 22690-88 Бетоны. Определение
прочности механическими методами неразрушающего контроляГОСТ 26633-2012 Бетоны тяжелые и
мелкозернистые. Технические условияГОСТ 28570-90 Бетоны. Методы определения
прочности по образцам, отобранным из конструкцийГОСТ 31384-2008 Защита бетонных и
железобетонных конструкций от коррозии.

Общие технические
требованияСНиП
12-03-2001 “Безопасность труда в строительстве. Часть 1. Общие
требования”СП 28.13330.2012 “СНиП 2.03.11-85 Защита
строительных конструкций от коррозии”СП 48.13330.2011 “СНиП 12-01-2004
Организация строительства”СП 63.13330.2012 “СНиП 52-01-2003
Бетонные и железобетонные конструкции.

Основные положения”СП 70.13330.2012 “СНиП 3.03.01-87
Несущие и ограждающие конструкции”СП 131.13330.2012 “СНиП 23-01-99
Строительная климатология”СТО НОСТРОЙ 2.6.54-2011 Конструкции
монолитные бетонные и железобетонные. Технические требования к
производству работ, правила и методы контроляПримечание – При
пользовании настоящими рекомендациями целесообразно проверить
действие ссылочных нормативных документов в информационной системе
общего пользования – на официальных сайтах национального органа
Российской Федерации по стандартизации, Ассоциации “Национальное
объединение строителей” и некоммерческого партнерства
“Саморегулируемая организация Союз строительных компаний Урала и
Сибири” в сети Интернет или по ежегодно издаваемым информационным
указателям, опубликованным по состоянию на 1 января текущего года.

Если ссылочный нормативный документ заменен (изменен,
актуализирован), то при пользовании настоящими рекомендациями
следует руководствоваться новым (измененным) нормативным
документом. Если ссылочный стандарт отменен без замены, то
положение, в котором дана ссылка на него, применяется в части, не
затрагивающей эту ссылку.

3
ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И ОБОЗНАЧЕНИЯ

3.1.1 активный
метод: Метод термообработки, при котором тепловое воздействие
осуществляется в период выдерживания бетона.

3.1.2
бетонная смесь: Готовая к применению перемешанная однородная
смесь вяжущего, заполнителей и воды с добавлением или без
добавления химических и минеральных добавок, которая после
уплотнения, схватывания и твердения превращается в бетон.

[ГОСТ 7473-2010, пункт
3.1
]

3.1.3 бетонные
работы: Комплекс работ по приготовлению, транспортировке,
укладке и выдерживанию бетона в различных условиях окружающей
среды.

3.1.4 зимнее
бетонирование: Производство бетонных работ в зимний период.

3.1.5 зимний
период: Время года с ожидаемой среднесуточной температурой
наружного воздуха ниже 5°С и минимальной суточной температурой
ниже 0°С.

3.1.6 класс бетона по
прочности в проектном возрасте: Значение класса бетона,
указанное в документе о качестве бетонной смеси.Примечание – Форма и
содержание документа о качестве бетонной смеси установлены ГОСТ 7473.

3.1.7 компьютерный
температурно-прочностной контроль: Оценка, прогнозирование и
документирование параметров твердения бетона с использованием
компьютерных программ.

3.1.8 критическая
прочность, %: Прочность бетона, после
достижения которой замораживание уже не вносит необратимых
нарушений в структуру бетона, а бетон в нормальных условиях
набирает нормируемую прочность.

как заливать бетон в зимнюю пору

3.1.9 массивность
конструкции: Взаимосвязь геометрических характеристик бетонной
конструкции и распределения температуры внутри бетона за счет
теплопроводности.

3.1.10 метод зимнего
бетонирования: Виды теплового или иного воздействия на бетонную
смесь или бетон с целью получения критической, промежуточной,
распалубочной прочности, прочности бетона при поэтапном загружении
или проектных характеристик бетона в зимних условиях.

3.1.11 модуль
поверхности конструкции, м: Характеристика массивности
конструкции, равная отношению площади охлаждаемой поверхности
конструкции к ее объему.

3.1.12
монолитная бетонная конструкция: Элемент здания или
сооружения, выполняемый из бетонной смеси непосредственно в
проектном положении без рабочей арматуры.

[СТО НОСТРОЙ 2.6.54-2011, пункт
3.2.8
]

3.1.13
монолитная железобетонная конструкция: Элемент здания или
сооружения, выполняемый из бетонной смеси непосредственно в
проектном положении с установкой рабочей арматуры.

[СТО НОСТРОЙ 2.6.54-2011, пункт
3.2.9
]

3.1.14 нормальные
условия твердения бетона: Температура окружающей среды (20±2)°С
и относительная влажность (95±5)%.

Предлагаем ознакомиться:  Схема отмостки вокруг дома из бетона

3.1.15 нормируемое
значение прочности бетона: Прочность бетона в проектном
возрасте или ее доля в промежуточном возрасте, установленная в
нормативном или техническом документе, по которому изготавливают
бетонную смесь или конструкцию.

3.1.16 пассивный
метод: Метод, при котором отсутствует термообработка бетона или
тепловое воздействие происходит только на этапе нагрева бетонной
смеси до ее укладки в конструкцию.

3.1.17
партия бетонной смеси: Объем бетонной смеси одного
номинального состава, изготовленный или уложенный за определенное
время.

[ГОСТ 18105-2010, пункт
3.1.7
]

3.1.18 промежуточная
прочность: Прочность бетона на определенном этапе выдерживания
бетона.

3.1.19 прочность при
поэтапном загружении: Прочность бетона, определяемая с учетом
допустимой интенсивности загружения конструкций при их
выдерживании.

3.1.20 распалубочная
прочность, %: Прочность бетона, при которой
осуществляется снятие опалубки с поверхностей конструкции.

выдерживание бетона зимой

3.1.21 текущий
контроль: Контроль прочности бетона партии бетонной смеси или
конструкций, при котором значения фактической прочности и
однородности бетона по прочности рассчитывают по результатам
контроля этой партии.

3.1.22 текущая
прочность: Прочность бетона монолитных конструкций в конкретный
момент времени в процессе выдерживания в зимних условиях.

3.1.23 температурные
напряжения: Напряжения, возникающие в бетоне вследствие
изменения температуры или неравномерного ее распределения по
сечению монолитных конструкций.

3.1.24 температурный
режим: Проектное и (или) фактическое изменение температуры
бетона во времени на разных этапах выдерживания бетона.

3.1.25 требуемая
прочность бетона в проектном возрасте: Минимально допустимое
среднее значение прочности бетона в контролируемых партиях бетонной
смеси или конструкций, соответствующее нормируемой прочности бетона
при ее фактической однородности.

3.1.26 трёхсуточная
прочность бетона,, МПа: Прочность бетона в возрасте
трёх суток при его выдерживании в нормальных условиях
твердения.

3.1.27
фактический класс бетона по прочности: Значение класса
бетона по прочности монолитных конструкций, рассчитанное по
результатам определения фактической прочности бетона и ее
однородности в контролируемой партии.

[ГОСТ 18105-2010, пункт
3.1.3
]

3.1.28
фактическая прочность бетона: Среднее значение прочности
бетона в партиях бетонной смеси или конструкций, рассчитанное по
результатам ее определения в контролируемой партии.

[ГОСТ 18105-2010, пункт
3.1.4
]

бетонирование с электродами прогрева

3.2 Основные обозначения,
принятые в настоящих рекомендациях, приведены в таблице 3.1.

Таблица 3.1 – Основные обозначения

Символ

Размерность

Значение

°С

Температура наружного
воздуха

Вт/(м·°С)

Приведенный коэффициент
теплопередачи ограждения

°С

Температура приготовленной
бетонной смеси на выходе из бетоносмесителя

м

Модуль поверхности
конструкции

°С

Температура изотермического
выдерживания бетона

°С

Начальная температура бетона,
уложенного в конструкцию

м

Площадь охлаждаемых
поверхностей конструкции

м

Объём конструкции

°С/час

Скорость подъёма
температуры

м

Модуль опалубленной
поверхности

м

Площадь опалубленной
поверхности

Способы искусственного нагрева и прогрева бетона

7.1 Сущность способа
заключается в кондуктивной передаче тепла контактной зоне бетона от
нагретого провода, находящегося в теле прогреваемой конструкции и
дальнейшему распределению тепла по ее сечению вследствие
теплопроводности.

7.2 Способ прогрева
бетона нагревательными проводами может быть совмещен с другими
способами зимнего бетонирования.

7.3 В качестве
нагревательных проводов рекомендуется использовать провода со
стальной изолированной токонесущей жилой диаметром 1…3 мм марки
ПНСВ. Возможно использование аналогичных по конструкции
трансляционных проводов марок ПВЖ, ПГЖ и т.п., а также
нагревательных проводов марок ПНПЖ, ПНВЖ, ПОСХВ, ПОСХП и т.п.

Ниже
приведенные данные касаются провода марки ПНСВ.Изоляцией стальной жилы
служит полиэтилен (температура размягчения 70°С) либо
поливинилхлорид (температура размягчения 170°С). Допускается
использовать силиконовую и фторопластовую изоляции, у которых
допустимая температура нагрева составляет 150…220°С.

Выбор
изоляции нагревательного провода осуществляется из следующих
предпосылок:-
применение изоляции с более высокой температурой размягчения
позволяет пропускать через провод большие значения токовой
нагрузки, что обеспечивает ускорение прогрева бетона;-
поливинилхлоридная изоляция (в отличие от полиэтиленовой) при
температуре -10°С теряет свою гибкость и при монтаже подвержена
растрескиванию;


для армированных конструкций желательно использовать изоляцию с
большей температурой размягчения, чтобы исключить короткое
замыкания стальной жилы на арматуру вследствие пробоя изоляции.Приблизительные
температуры нагрева провода в зависимости от погонной нагрузки
приведены в таблице Б.1 (приложение Б).

7.4 Максимальная погонная
нагрузка на провод не должна превышать 45…50 Вт/м, так как
температура бетона превышающая 100°С ведет к обезвоживанию
контактных зон бетона, их неполной гидратации и, в конечном итоге,
снижению прочности. Для неармированных конструкций оптимальная
погонная нагрузка на провод составляет 30…35 Вт/м, для
армированных – 35…40 Вт/м.

основные характеристики бетона

7.5 Термообработка
осуществляется на пониженных напряжениях (24…120 В). При
обеспечении безопасных условий производства работ допускается
выполнять термообработку на промышленных напряжениях (220/380
В).

, (28)

где – площадь поперечного сечения стальной
жилы, мм; – удельное электросопротивление стальной
жилы при рабочей температуре , Ом·мм/м.

, (29)

где – удельное электрическое сопротивление
стальной жилы при 20°С (в случае отсутствия данных завода
изготовителя провода, можно принять равным 0,150 Ом·мм/м); – температурный коэффициент сопротивления
стальной жилы, равный 0,0046°С; – коэффициент принимаемый для постоянного
тока 1, для переменного при рабочей температуре от 50°С до 60°С –
1,02, от 61°С до 80°С – 1,06, от 81°С до 100°С – 1,2.

, (30)

но не более 15А. Здесь – погонная нагрузка на провод, Вт/м.

, (31)

. (32)

. (33)

7.10 Схемы соединения
проводов к источнику тока по типу “звезда” и “треугольник”
приведены на рисунках 7.1-7.2.

Рисунок 7.1 – Схема соединения проводов звездой

Рисунок 7.2 – Схема соединения проводов треугольником

, (34)

. (35)

Здесь – предельно допустимый ток для данного
трансформатора при принятом напряжении (по паспортным данным).Общее количество ниток
должно быть кратно трем, чтобы обеспечивалась равномерная загрузка
фаз.

7.12 Для некоторых
конструкций целесообразно расчётную длину провода не определять, а
назначать директивно. Например, для прогрева бетона в перекрытиях
или подпорных стенах длину провода эффективнее назначать кратной
ширине или высоте конструкции, чтобы обеспечить удобство коммутации
проводов к шинопроводу. При этом обязательно должно быть выполнено
условие

, (36)

. (37)

. (38)

. (39)

В
некоторых случаях, если расчётная длина провода меньше необходимой,
можно вместо соединения звездой использовать соединение
треугольником, так как в этом случае длина провода увеличивается в
1,73 раза.

. (40)

7.14 Нагревательные
провода расчетной длины закладываются в конструкцию до начала
бетонирования. Отклонение длины провода от расчетной не
допускается. Так, излишняя длина нагревательного провода приводит к
его перерасходу и необходимости более плотной навивки в теле
конструкции, что ведет к увеличению трудоемкости работ.

Одновременно уменьшается погонная нагрузка на провод, что приводит
к снижению скорости прогрева бетона и увеличению продолжительности
работ. С другой стороны, уменьшение длины греющего провода ведет к
его чрезмерному нагреву, что влечет перегрев бетона в контактной
зоне и возможному расплавлению изоляции с последующим коротким
замыканием жилы на арматуру.

, (41)

где Р – удельная требуемая мощность, приходящаяся на единицу
площади прогреваемой конструкции, Вт/м.

температура твердения бетона

, (42)

где – коэффициент, учитывающий потери тепла
(может быть принят 1,16); – площадь боковой поверхности конструкции,
м.Окончательное значение
шага расстановки нагревательных проводов назначается с учетом
фактического расположения арматуры в конструкции в соответствии с
ее рабочими чертежами.В
зонах конструкции, подвергающихся интенсивному охлаждению
(например, углы или торцы конструкции), целесообразно уменьшать шаг
расстановки проводов. При этом шаг расстановки проводов должен быть
не менее 50 мм.

. (43)

7.17 Нагревательный
провод крепится к арматурному каркасу (сетке) в наиболее
безопасных, с точки зрения их повреждения, местах.Провод не должен касаться
материалов с низкой теплопроводностью (например, деревянной или
фанерной опалубки, теплоизоляции и т.п.).Крепление нагревательного
провода выполняется отрезками-отходами провода с шагом 0,5…0,75
м.

Возможно применение отрезков полипропиленового шпагата или
мягкой вязальной проволоки диаметром не менее 1,2 мм с контролем
отсутствия повреждения изоляции. Крепление производится без
сильного натяжения (с усилием до 3…5 кг).Радиус изгиба провода
принимается не менее 3 наружных диаметров, но не менее 25 мм.

покрытие бетона трещинами из-за мороза

7.18 Во избежание
обгорания изоляции нагревательного провода, выпуск его концов из
бетона осуществляется через изолированные монтажные одножильные
отводы.В
качестве монтажного отвода рекомендуется использовать алюминиевый
провод (при токе до 100 А), например, марки АПВ или медный провод
(при токе более 100 А), например, марки КГ.Сечение монтажного отвода
определяется на основании расчётной токовой нагрузки, А, по таблице
Б.2 (приложение Б).

, (44)

где – количество проводов, подключенных к
одному отводу.Принятое сечение
монтажного отвода не должно быть менее 2,5 мм.

, (45)

. (46)

Здесь – количество троек или треугольников,
соответственно.

7.20 Подключение
нагревательных проводов к источнику тока производится по мере
завершения работ по укладке бетона на отдельных участках захватки,
не допуская замораживания бетона и не допуская подключения
нагревателей на тех участках, где укладка бетона еще не
завершена.Открытая (не
забетонированная) арматура железобетонных конструкций, связанная с
участком, находящимся под электрическим током, подлежит заземлению
(занулению).

, (47)

где , , – удельные мощности необходимые для
разогрева бетона, опалубки и арматуры соответственно; – удельная мощность, эквивалентная
экзотермическому теплу, выделившемуся в бетоне (можно принять 0,8
кВт/м); – удельная мощность, требуемая в период
изотермического выдерживания, кВт/м.

набор прочности бетона при разной температуре

. (48)

. (49)

. (50)

Здесь , – соответственно удельная теплоёмкость
арматуры и i-го слоя опалубки, кДж/(кг·°С) (можно принять =0,47 кДж/(кг·°С)); – удельный вес i-го слоя опалубки,
кг/м; – вес арматуры, расположенной в 1
м бетона, кг; – толщина i-го слоя опалубки, м; – модуль опалубленной поверхности,
м.

, (51)

где – площадь опалубленной поверхности,
м.Время изотермического
прогрева и остывания определяются исходя из требований достижения
бетоном к концу выдерживания нормируемой прочности.

7.22 Пример расчёта
параметров греющего провода представлен в приложении В.

7.23 В целях соблюдения
требований охраны труда и техники безопасности при использовании
нагревательных проводов запрещается:-
подключать в сеть находящиеся на воздухе нагревательные провода,
частично или полностью не забетонированные в конструкции;-
осуществлять крепление нагревательного провода к арматуре без
использования вспомогательных средств (отрезков проволоки и т.п.),
например, узлом;-
подключать нагревательные провода в сеть с напряжением, превышающим
рабочее или подключать провода, длиной менее расчетной.

8
ЭЛЕКТРОПРОГРЕВ БЕТОНА

и количество выделяемого тепла при постоянном напряжении будет
определяться сопротивлением бетонной смеси или ее удельным
электрическим сопротивлением.

8.3 Электропрогрев бетона
может быть сквозным, когда электрический ток проходит через все
сечение конструкции и тепло выделяется в объеме всей конструкции,
или периферийным, при котором электроды разноименных фаз
размещаются на поверхности конструкций. При этом вся подводимая
электроэнергия превращается в тепловую в периферийных слоях
конструкций толщиной приблизительно равной половине расстояния
между электродами, в то время как центральные зоны конструкций
нагреваются за счет экзотермии цемента и теплопередачи от
поверхностных слоев.

8.4 Периферийный
электропрогрев следует применять для прогрева конструкции толщиной
более 40 см, используя полосовые или пластинчатые электроды. Это
фундаменты под оборудование, под колонны, фундаментные плиты,
колонны, стены и т.д.

8.5 При периферийном
электропрогреве температура внутренних зон конструкции растет
значительно медленнее, чем в поверхностных слоях, поэтому во
избежание недопустимых температурных перепадов температура
изотермического прогрева в конструкциях толщиной более 40 см
ограничена величиной 40°С.

8.6 Сквозной прогрев с
помощью полосовых или пластинчатых электродов следует применять для
конструкций толщиной до 40 см, а в случае использования бетона с
добавками – до 60 см.

8.7 Длину стержневых
электродов, устанавливаемых в бетон, необходимо принимать с таким
расчетом, чтобы они выступали над утеплителем верхней поверхности
конструкции или при их установке горизонтально выступали за пределы
опалубки на 8-10 см для подключения токопроводящих проводов.

8.8 В процессе
бетонирования необходимо обращать внимание на соблюдение проектной
толщины защитного слоя, сохранения положения электродов. Требуемое
расстояние достигается применением специальных пластмассовых
изоляторов, закрепляемых на арматуре до начала бетонирования. При
прогреве открытые поверхности бетона должны быть укрыты
гидроизоляционным материалом, а при необходимости и утеплены.

8.9 Удельная
электрическая мощность, требуемая на отдельных этапах
электропрогрева для поддержания заданного режима, определяется по
следующим формулам [5]:на период подъёма
температуры

как заливать бетон зимой

, (53)

на период изотермического прогрева

, (54)

0где – мощность, необходимая для разогрева
бетона, кВт/м; – мощность, необходимая для разогрева
опалубочной системы, кВт/м; – мощность, необходимая для восполнения
теплопотерь в окружающую среду в процессе разогрева бетона,
кВт/м; – мощность, эквивалентная теплу,
выделяющемуся в бетоне за время прогрева вследствие экзотермии
цемента, кВт/м (при отсутствии расчетных данных
принимается равной 0,8 кВт/м).

8.10 Пример расчёта
параметров электропрогрева бетона представлен в приложении Г.